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Abstract: Recently, in Italy, a flowchart to be used by General Practitioners for the at-home treatment
of patients with COVID-19, has been released. It states that early at-home treatment for SARS-CoV-2
infection is possible due to the availability of specific antiviral drugs to be used in at-risk patients,
and that non-steroidal anti-inflammatory drugs (NSAIDs) have an important function in combating
the virus. Therefore, the use of NSAIDs is not only rational but also effective in cases that cannot
be treated using antivirals. These seemingly simple concepts have been applied in Italy since the
beginning of the pandemic by doctors that belong to Italian groups created in order to help COVID-19
patients early at home, at a time of organizational difficulties within Italian health institutions and
government. However, this approach was largely boycotted by both the Italian Ministry of Health
and medical institutions, which mainly suggested the use of paracetamol as symptomatic, and a
wait-and-watch approach for the first three days from the onset of symptoms. In this article, we
analyze the rationale for the use of NSAIDs and, in particular, the multi-targeted approach including
indomethacin in synergism with flavonoids and low-dose aspirin, as early at-home treatment of
patients with COVID-19. Applying these simple concepts from the beginning could have reduced
the high lethality of the disease during the first two years of the pandemic and prevented hospital
overload. In perspective, it is still necessary to systematically address the comparison between
different therapeutic approaches to this viral disease on an experimental basis.

Keywords: COVID-19 treatment; non-steroidal anti-inflammatory drugs; indomethacin; aspirin;
flavonoids; hesperidin; quercetin; vitamin C

1. Introduction

Between 1991 and 1992 the epidemiologists at McMaster University in Hamilton
(Ontario, Canada) published a series of studies in which the statute of evidence-based
medicine (EBM) was defined for the first time [1]. EBM refers to the application of the best
available research to clinical care, which requires the integration of evidence with clinical
expertise and patient values [2]. EBM brought about an epochal turning point in the way
medicine is practiced. This approach has simplified and made the way medicine is applied
more precise and safer.

Unfortunately, however, between the end of 2019 and the beginning of 2020, we found
ourselves facing a pandemic for the first time in the modern era, determined by a virus
(SARS-CoV-2), little-known, which started in China and spread rapidly around the world.
This virus immediately showed that it had rapid diffusibility and high lethality, particularly
in older subjects and those with comorbidities [3].

At the time, we had no EBM-supported guidelines to help us deal with COVID-19, the
disease generated by the SARS-CoV-2 infection. Therefore, it was necessary to return to
doctoring like before the advent of EBM and the guidelines, because to obtain indications
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based on evidence of effectiveness took time, money, and organization. In the meantime,
something had to be done; patients could not be left to their own devices without medical
support [4]. Despite this, two fronts of doctors were formed who thought in completely
opposite ways, namely, that of doctors closely linked to EBM, who claimed, therefore, not
to use untested drugs for this disease, and that of doctors, mostly older, who asserted that
it was not ethical not deal with the disease at least by using drugs already on the market,
which had a rationale based on their known pharmacological mechanisms [5]. That is,
drugs that could logically interfere with the multiplication of the virus and counteract the
inflammation and thrombosis that is triggered by the infection, in the hope of preventing
worsening of the disease, thus reducing hospitalizations and deaths.

A little-known viral disease had to be treated with all the weapons at our disposal. The
weapons to combat viral diseases are first and foremost vaccines (provided they are effective
and safe) and antiviral drugs, and, in the case of this virus, drugs that could attenuate,
if not completely reset, the pathophysiological mechanisms that it uses to determine
aggravation of the disease. Unfortunately, however, from the beginning of the pandemic,
the governments in most countries almost exclusively espoused the route of vaccines, even
boycotting, openly in some countries, the rational use of potentially effective drugs already
on the market, albeit with other indications. Yet, it is now well known that mRNA vaccines
against SARS-CoV-2 are difficult to develop, particularly due to the rapid variability of
this type of virus, which ends up making vaccines partially ineffective, particularly in
preventing virus transmission [6]. Among the various drugs already on the market, we
had many drugs available, which, based on their mechanisms of action could be efficacious
to counteract SARS-CoV-2 infection, preventing it from worsening. Among them, firstly
anti-inflammatory non-steroidal drugs.

This is a descriptive review in which we analyze the rationale for the use of NSAIDs
and, in particular, a multi-targeted approach including indomethacin in synergism with
flavonoids and low-dose aspirin, as early at-home treatment of patients with mild-to-
moderate COVID-19. The articles were selected in Internet Archive and in PubMed by using
the words Non-steroidal anti-inflammatory drugs, Indomethacin, Flavonoids, Quercetin,
Hesperidin, SARS-CoV-2, COVID-19, and COVID-19 guidelines in Italy.

2. Non-Steroidal Anti-Inflammatory Drugs in the Fight against COVID-19

It would seem obvious, in light of the fact that the virus can, in some cases, aggravate
disease-causing uncontrolled inflammation, up to cytokine storm and thrombosis [7,8], to
hypothesize the use of anti-inflammatory drugs aimed at reducing the aggressiveness of
the disease, as has already been done for some other diseases such as the flu. However,
unfortunately, this thesis was espoused by few, also because, at the very beginning of the
pandemic, a warning was issued not to use ibuprofen during COVID-19 because this could
lead to a worsening of the disease [9]. Furthermore, the first guidelines issued by the Italian
Ministry of Health and the Italian Medicines Agency (AIFA), indicated only the use of
paracetamol as symptomatic and to carefully observe the progress of the disease in the first
72 h from the onset of symptoms [10].

However, despite ministerial guidelines, some Italian doctors began using non-steroidal
anti-inflammatory drugs in the hope of preventing the development of uncontrolled
inflammation in the lungs and vessels. Many of these doctors met in groups, to be
able to discuss with each other and to try to determine a common line of conduct. Of
these, certainly, the largest group was that of Early Home Therapy for COVID-19 (www.
terapiadomiciciliarecovid19.org (accessed on 19 April 2020)) founded by a Neapolitan
lawyer, Erich Grimaldi, to help treat COVID-19 at home in those patients who could not
find help from their general practitioners. The results obtained by this and other groups, as
later documented by scientific publications, have been very good, showing a significant
reduction in both hospitalizations and lethality, particularly when prompt action was taken
at the first onset of symptoms, using non-steroidal anti-inflammatory drugs [11–15]. These
results were also obtained in older patients and in subjects with numerous risk factors.

www.terapiadomiciciliarecovid19.org
www.terapiadomiciciliarecovid19.org
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One study published in July 2021 by an important Italian group, reported that effective
treatment algorithms implemented based on a pharmacological and pathophysiological
rationale can greatly reduce hospitalizations of patients with COVID-19 and that this result
has important implications both for patients and the health system [11]. In this case, the
treatment consisted principally of anti-inflammatory agents, especially relatively selective
cyclooxygenase-2 (COX-2) inhibitors, administered early at the very beginning of the onset
of symptoms.

Our group also published the results of a retrospective observational study of out-
comes and hospitalization rates of patients in Italy with a confirmed diagnosis of early
COVID-19 [12]. The study was performed on 158 patients divided into two groups. Group 1
of 85 patients was treated as early as possible (<72 h from the onset of symptoms), while
group 2 of 73 patients was treated >72 h after the onset of symptoms, because they con-
sulted the doctor late. The NSAID used in this case was indomethacin at a dose of 75 or
100 mg a day, according to weight <70 or >100 kg, integrated with flavonoids, cardioaspirin,
and omeprazole. The results of this study showed a significant reduction in symptom
duration and hospitalizations in group 1, indicating the efficacy of the drugs used when
they were administered promptly at the early onset of symptoms.

These results were also confirmed by a further retrospective multicenter larger study of
966 patients with COVID-19 treated with different NSAIDs and of a subgroup of 339 older
patients with a mean age of 60 years and with multiple risk factors. Prompt intervention
with NSAIDs produced better results compared to later intervention [15].

A further publication by Consolaro et al. evaluated the outcomes, by a matched-
cohort study, in 108 consecutive patients with mild COVID-19 managed promptly at
home, according to the proposed treatment algorithm and in another 108 patients treated
with another therapeutic schedule [13]. This study showed a significant reduction in both
symptom duration and hospitalizations in the group treated according to the recommended
algorithm. Moreover, in this case, NSAIDs with an action relatively selective on COX-2 were
preferred. Another recent paper by Cosentino et al. reports the results of an observational
retrospective study performed on data provided by volunteer doctors who belong to the
IppocrateOrg Association in Italy, on 392 COVID-19 patients [14]. In this case, the treatment,
mostly with early NSAID application, produced a great reduction in hospitalizations with
a very low number of deaths.

The results of a randomized double-blind placebo-controlled trial were reported
recently, showing that mefenamic acid, a non-steroidal anti-inflammatory drug, markedly
reduced the extent of symptoms and the time to reach an acceptable health status of the
patients [16].

An attractive opinion article clearly asserted that the early administration of NSAIDs,
among others, ibuprofen, in COVID-19 patients is not only safe but may also prevent the
occurrence of complications that could worsen the course of the disease, and explained
some of the suggested protective mechanisms of NSAIDs [17]. Recently, another important
review article on early at-home treatment using NSAIDs in patients with mild-to-moderate
SARS-CoV-2 infection was published, reporting that early disease symptoms variably
reflect an underlying inflammatory response to the viral infection, and that, for this reason,
the use of NSAIDs in the initial stage of the disease could be a valid therapeutic strategy [18].
In this publication, the authors recognize the validity of the approach pioneered by our
group, which includes the use of indomethacin [11].

Most of these studies, although observational and retrospective, demonstrate that the
early treatment at home with a NSAID improves the outcomes of the disease reducing the
duration of symptoms and the number of patients evolving towards interstitial pneumonia,
and both the number of hospitalizations and deaths [11–15]. In addition, one of the studies
also reported that in the group of patients for whom the therapy was started within 72 h
from the beginning of disease symptoms, a significantly lower number of patients had
increased D-dimer levels, as compared with the number of patients for whom the treatment
had been started later [12].
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3. Potential of Indomethacin in the Treatment of COVID-19

Of the various non-steroidal anti-inflammatory drugs, indomethacin seems to have
the best characteristics for counteracting the pathophysiological mechanisms used by the
virus to worsen the disease.

Indomethacin is a molecule that belongs to the class of NSAIDs. Indomethacin was
put on the market in the mid-60s, and so has been used for about 60 years. It has a powerful
analgesic, antipyretic, and anti-inflammatory action, greater than acetylsalicylic acid and
most of the other NSAIDs that subsequently came into use, and is extremely low-cost
(between EUR 2 and 3 per package). Over 45 years ago, it was absolutely the most used
anti-inflammatory drug with multiple indications such as osteo-articular diseases and, in
particular, acute pericarditis (post-viral and uremic) and myocarditis (post-viral) [19]. In
these latter types of pathology, indomethacin has a very rapid action on chest pain and fever,
with evident improvement of the disease already in the first days of therapy; even though,
on average, the therapy cycle lasts at least a month. Since the dosage of indomethacin in
these diseases is rather high (50 mg orally 3 or 4 times a day after meals), to avoid the most
frequent side effect, i.e., gastritis with stomach pain, it is always associated with gastric
protection. Recurrences of pericarditis, in progress or after discontinuation of indomethacin
therapy, are very rare and, in this case, colchicine is associated with the drug. Indomethacin
is also used intravenously to close the ductus arteriosus of Botallo in premature births
and, being a prostaglandin antagonist, as a tocolytic, to slow down uterine contractions in
premature births [20].

It has been reported with computational and experimental methods that indomethacin
is a potent inhibitor of coronavirus replication in vitro against human SARS-CoV-1 and 2,
and in vivo against canine coronavirus [21,22], without cytotoxic effects, and that, having
both anti-inflammatory and antiviral activity, it could be repurposed as a treatment in
COVID-19 therapy [23]. A retrospective study reported a beneficial effect of indomethacin
in refractory headaches in COVID-19 and post-COVID-19 patients [24]. A recent manuscript
reported the results of a randomized controlled study of indomethacin versus paracetamol,
added to standard background therapy, in patients with mild-to-moderate COVID-19. The
study’s main objective was the prevention of desaturation at a value <93% of O2 [25].
Importantly, the results showed that no patients in the indomethacin group desaturated,
while as many as 20 patients desaturated in the paracetamol group.

Indomethacin can be administered orally, rectally, or intravenously, and by topical use,
in particular eye drops. The side and unwanted effects of indomethacin are prevalent at
the level of the gastrointestinal tract, although, more rarely, dizziness, vertigo, headache,
drowsiness, etc., may occur. Side effects, as with most drugs, are more frequent at high
doses so that, often, by reducing the dosage, they tend to reduce their intensity until they
disappear. This is one of the reasons why we looked for substances that could have a
synergistic mechanism with indomethacin in the therapy of COVID-19 and which, added
to the anti-inflammatory therapy, would allow us to reduce the dosage to between 75 and
100 mg per day, which, in clinical experience, are dosages largely better tolerated. These
substances have been identified in hesperidin and quercetin, two nutraceutical substances
of the flavonoid class.

The anti-inflammatory actions of indomethacin are exerted in various ways, some of
which are specific to the molecule and, as such, make it more indicated in COVID-19.

3.1. Cyclooxygenases Inhibition

The traditional action is that of inhibition of cyclooxygenases 1 and 2; therefore, a
broad-spectrum inhibitory action on prostaglandin synthesis, common to other inhibitors
such as diclofenac, ibuprofen, etc. Since the predominant pharmacological activity is the
inhibition of COX-2 overexpression and overproduction of pro-inflammatory cytokines and
chemokines, these drugs represent a robust treatment option for SARS-CoV-2 infection [26].
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3.2. BCL2-Associated Agonist of Cell Death

Indomethacin blocks the BCL2-associated agonist of cell death (BAD) pro-apoptotic
protein, which, in turn, is linked to the synthesis of cytokines IL-6, IL-8, and IL-23 [27]
and to the activation of MAPK8 and MAPK10 (mitogen-activated protein kinases), which
are key mediators of inflammation, vasoconstriction, and thrombosis. This means that
the effect of indomethacin on human cells is much broader than the inhibition of cyclo-
oxygenases and directly regulates delicate and complex biological mechanisms such as
pro-inflammatory cytokines.

3.3. Renin–Angiotensin System

In close correlation with the previous point, one of the most interesting aspects
emerges, which is the regulation of the renin–angiotensin system (RAS). Indeed, a “network
pharmacology” study identified that three target proteins of the 6MNA anti-inflammatories,
rofecoxib and indomethacin (MAPK8, MAPK10, and BAD), are mainly associated with
the RAS signaling pathway [28]. Therefore, inactivation of these proteins may also be a
viable strategy to alleviate the organ injury induced by COVID-19, which, as we have
seen, depends heavily on dysregulation of that system. Precisely, the cited work [28]
compared many NSAIDs in terms of their ability to interact with the key mechanisms of
COVID-19: Celecoxib, Diclofenac, Diflunisal, Etodolac, Fenoprofen, Flubiprofen, Ibuprofen,
Indomethacin, Ketoprofen, Ketorolac, Mefenamic acid, Meloxicam, Naproxen, Oxaprozin,
Piroxicam, Rofecoxib, Sulindac, Tolmetin, Valdecoxib, and 6MNA (prodrug of Nabume-
tone). Of the three NSAIDs 6MNA, rofecoxib and indomethacin were the most potent
candidates to fight COVID-19 due to their ability to regulate the RAS. It should be noted
that rofecoxib was withdrawn due to adverse cardiovascular events.

3.4. Bradykinin

Finally, the RAS system, unbalanced in COVID-19 due to an excess of angiotensin II
and a lack of ACE2, leads to an increase in bradykinin, an important mediator of acute
inflammation (especially exudation and pain) [29] involved in vasodilation, plasma ex-
travasation, bronchoconstriction, and nociception. Since ACE2 enzyme activity is involved
in the degradation of bradykinin [30,31], its absence can cause serious consequences by
being responsible for a “bradykinin storm” in the acute phases of the inflammatory process
of COVID-19 [29,31,32] and, due to its characteristics, indomethacin is among the most
suitable drugs to counteract the effects of this imbalance [33,34].

3.5. Antiviral Action of Indomethacin

As mentioned above, the particular interest in indomethacin, among the many NSAIDs
available, is related also to the fact that this drug, in addition to its powerful anti-inflammatory
and anti-platelets actions, has direct antiviral properties against several viruses, including
cytomegalovirus, herpes virus 6, and hepatitis B virus [35–37]. According to Amici [38], in
a model of vesicular stomatitis infection, indomethacin-activated PKR (double-stranded
RNA-dependent protein kinase), resulting in the phosphorylation of elF2α and, in turn,
disrupting translation of the viral protein and inhibiting viral replication. More recently,
indomethacin has been shown to have antiviral properties in vitro on human SARS-CoV,
canine coronavirus, and recently on SARS-CoV-2, without cytotoxic effects [22,38]. Direct
evidence of the antiviral efficacy of indomethacin against SARS-CoV-2 has been provided
in cellular models and in vivo in another canine model of infection [39]. Compared with
a control anti-inflammatory drug (aspirin), indomethacin significantly reduced mortal-
ity in experimentally infected dogs, suggesting that the effect is independent of anti-
inflammatory action. Molecular docking studies have suggested that indomethacin is
able to down-regulate genes involved in virus entry (ACE2 and TMPRSS2), as well as
other genes involved in the same pathways [40], and is a potential antagonist of the main
SARS-CoV-2 protease [41] and of non-structural protein 10 [42]. Models based on systems
biology suggest that the action of indomethacin against SARS-CoV-2 depends on its pre-
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ferred interaction with viral proteins [43]. Moreover, indomethacin inhibits the function of
membrane-associated prostaglandin E synthase (PTGES2), which catalyzes the conversion
of prostaglandin H2 to prostaglandin E2 [44]. Since PTGES2 interacts with the viral protein
NSP7, the complex function of NSP7/NSP8 is slowed down or blocked, and this could
constitute a mechanism of inhibition of viral growth.

A group of Indian researchers performed in silico screening of existing drugs against
the crucial proteins of SARS-CoV-2, and a few existing drugs, among which was in-
domethacin, were shortlisted. In addition, they analyzed the gene expression data of
SARS-CoV-2 in human lung epithelial cells and investigated which molecules can reverse
the cellular mRNA expression profiles in the diseased state. Indomethacin was found
effective to treat SARS-CoV-2 infection. The in silico findings on indomethacin were also
successfully validated by in vitro testing in Vero CCL-81 cells with ah IC50 of 12 µM [45].
Relevant scientific literature demonstrates that indomethacin has shown both in vitro and
in vivo to decrease viral replication in SARS-CoV and in SARS-CoV-2.

4. The Logic of a Target Synergistic Therapy

NSAIDs may be combined with other substances to mitigate side effects and increase
efficacy by exploiting the synergistic mechanisms of the associated substances. Our cited
observational study reported results obtained using indomethacin for the treatment of
COVID-19, combined with two flavonoids (hesperidin and quercetin), an anti-platelet dose
of aspirin, vitamin C, and omeprazole [12] (Table 1, Figure 1).

Table 1. Basic components of the synergistic multi-therapy used by Fazio et al. [12] and described in
this review.

Drug Chemical
Formula Structure Molecular Mass

(g/mol) Properties Dose

Indomethacin C19H16ClNO4
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Figure 1. General outline of viral infection and the complications caused by its spread in the body.
The substances proposed here for a possible therapeutic effect in coronavirus infection may act in
the various stages: (1) preventing binding of the virus to receptors or inhibiting the function of the
receptor itself, when it initiates the process of internalization; (2) inhibiting replication by blocking
proteases, Non-structural proteins, RNA polymerases, or the assembly of new virus particles; (3) by
helping the cell resist viral attack, i.e., by stopping the process of cytotoxicity mediated by oxygen
free radicals; (4) by modulating excess inflammatory reactions; (5) by modulating RAS imbalance;
(6) by preventing thrombosis; (7) by modulating gut microbiota and preventing systemic release of
pro-inflammatory LPS. Abbreviations: SARS-CoV-2: severe acute respiratory syndrome-Coronavirus-
2; I: Indomethacin; F: Flavonoids; A: Low-dose aspirin; ACE2: angiotensin-converting enzyme-2;
pp1a/1b: polypeptides 1a/1b; Mpro: Major protease (3CL-pro); PLpro: papain-like protease; TM-
PRSS2: transmembrane serine protease 2; NSP: non-structural proteins; RdRp: RNA-dependent RNA
polymerase; LPS: Lipopolysaccharide; NOX: NADPH oxidase; pp1a/1b: polypeptides 1a/1b; Mpro:
Major protease (3CL-pro); PLpro: papain-like protease; TMPRSS2: transmembrane serine protease
2; NSP: non-structural proteins; RdRp: RNA-dependent RNA polymerase; LPS: Lipopolysaccha-
ride; NOX: NADPH oxidase; RAS: Renin–Angiotensin System; AT1R: Angiotensin II receptor-1;
ARDS: acute respiratory distress syndrome; MODS: multiple organ dysfunction syndrome; MIS-C:
multisystemic inflammatory syndrome of children.

This combination also made a slight reduction in dosages possible, particularly of
indomethacin. The two flavonoids were chosen for their potent antioxidant action, but
also for their anti-inflammatory and antiviral actions, which were strongly synergic with
those of indomethacin [46,47]. An anti-platelet dose of aspirin was associated in order to
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boost the effects already present in indomethacin, aiming to completely block the platelet
hyper-aggregation that the virus can cause once it has entered the bloodstream [47–51]. This
treatment regimen, when started within 72 h of the onset of symptoms, showed relevant
positive effects, practically eliminating hospitalizations, significantly reducing the duration
of symptoms, and nullifying the onset of side effects [11,47].

Figure 1 illustrates the targets of the substances used, focusing on a typical SARS-CoV-
2-infected cell and the systemic consequences of its spread. The numbers indicate where
the substances used can act synergistically to prevent disease progression.

It should be considered that this anti-inflammatory activity of indomethacin can indi-
rectly have antiviral effects. Indeed, in the case of another common virus (cytomegalovirus),
PGE2 stimulates the activity of the main immediate-early promoter, which controls the
synthesis of viral regulatory proteins that are essential for its replication [36,52]. Other
potential advantages of indomethacin are its lysosomotropic features, enabling the drug to
counteract the endosomal pathway of virus entry [53].

4.1. Antioxidant and Antiviral Potentials of Flavonoids

In theory, the ideal therapy should include drugs that block the virus on the mucous
membranes (the surface linings of cavities such as the respiratory and digestive systems),
preventing it from entering the bloodstream and spreading to vital organs, for sufficient time
to allow the affected person to form antibodies, particularly mucosal secretory IgA, capable
of controlling and rendering the virus harmless. This function can also be exploited by
natural antiviral substances present in food or provided as supplements [54–62]. Promising
results have been reported for clinical trials carried out to test the efficacy of quercetin as a
complementary treatment in COVID-19 patients [63–66].

During SARS-CoV-2 virus infection, it is possible that large quantities of reactive
oxygen species are generated, causing damage to nearby cells and tissues [67–69]. In
serious cases, endothelial injury, coagulopathy, and pulmonary thrombosis cause hypoxia,
mitochondrial chain anomalies, mitochondrial dysfunction, oxidative stress, and DNA
damage [70,71]. Given the importance of oxidative stress in COVID-19, a therapeutic
approach including antioxidants has been proposed by authoritative researchers for this
disease too, and various publications have been reviewed [61,72]. It has been proposed
that early treatment with flavonoids could be a suitable way to restore the redox balance
and prevent cell damage and the consequent inflammatory storm due to lung damage
and respiratory dysfunction [73–78]. Polyphenols such as hesperidin and quercetin exert a
defensive action against oxidative stress, both as “scavenger” molecules, which eliminate
free radicals by deactivating them, and as inducers of endogenous antioxidant enzymes.

The Chinese group of Wu et al. [79] was the first to identify hesperidin as a potential
anti-SARS-CoV-2 remedy, using molecular docking techniques. So-called “molecular
docking” can be used to virtually make two molecules react and predict how a protein
(receptor or target) interacts with bioactive compounds (“ligands”). Large databases of
manmade compounds and an entire database of natural products were screened. The most
extraordinary result is that, of all the compounds examined, hesperidin was found to be the
most suitable for binding to the SARS-CoV-2 Spike, wedging itself in the middle surface
groove of the RBD, where some amino acids form a “hydrophobic pocket” suitable for
containing the substance. Various authors then confirmed the affinity of hesperidin with the
RBD fragment of the Spike protein and its ability to hinder the link with ACE2 or to make
the interaction unstable [80–85]. Today, literature on the subject has been greatly enriched,
also thanks to the writers’ contributions [35,74,86], other Italian authors [72,87–89], and
international researchers [90–94].

Energy landscape studies revealed that fisetin, quercetin, and campherol also bind
with the ACE2-Spike complex with low-binding free energy [95]. Quercetin formed hydro-
gen bonds with eight amino acid residues and hydrophobic interaction with five others.
Another group reported studies showing that quercetin has a high affinity with the viral
Spike, blocking sites of interaction with cell receptors [96]. Based on its ability to interact
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with non-structural proteins 8 and 10, quercetin is considered to be a candidate antiviral
drug even for mutated SARS-CoV-2 strains [49].

Surprisingly, the affinity of hesperidin with coronavirus proteins is not limited to the
Spike but also to the Mpro and PLpro enzymes (Figure 1, point 2). After the screening of
thousands of potential Mpro binding molecules, using molecular docking techniques, vari-
ous authors discovered a strong affinity between hesperidin and these
proteases [79,81,97,98]. This flavanone is therefore fully and rightly included among the
candidates for exercising clear direct antiviral action. This specific bond of hesperidin has
also been confirmed by other authors [81,84]. Quercetin has also been shown to inhibit
the Mpro of various coronaviruses, in particular of SARS-CoV [98], MERS-CoV [99], and
SARS-CoV-2 [100–102].

Quercetin has also been investigated for its properties that inhibit various stages of
the inflammatory process [103]. Quercetin also inhibits the NLR family pyrin domain con-
taining 3 (NLRP3) inflammasome, affecting TXNIP (thioredoxin interacting protein) [104]
and the secretory response of activated mast cells in human and animal models [105–109].
The biological action of this flavonol has also been explored in the laboratory directed
by Bellavite, evaluating the release of histamine from human basophils [110,111]. These
inhibitory properties of quercetin on histamine release are also interesting for COVID-19,
given that lung mast cells are involved in the phenomenon of worsening of the pulmonary
picture in the event of a “cytokine storm” [112,113] and histamine released from mast cells
can amplify the inflammatory process in SARS-CoV-2-infected lungs [114].

Finally, flavonoids also have significant benefits on the intestinal barrier function by
contributing to the regulation of the microbiota [115]. Available data indicate that the
oral cavity and intestine may be an active sites of SARS-CoV-2 infection [116–119], and
that the modulation of the microbiota can have beneficial effects in the context of the
disease [120,121].

4.2. Vitamin C

According to various authors, in a normal diet Vitamin C contributes from 15% to 30%
of the total antioxidant power of blood plasma [122]. Vitamin C is believed to prevent LDL
oxidation, protect human vascular smooth muscle cells from apoptosis [123], and strengthen
immune function [124]. Studies on animals infected with the influenza virus have shown
that vitamin C stimulates antiviral immune responses and reduces inflammation in the
lungs [125,126]. Taking these results, the low cost, and the high safety of natural foods rich
in vitamin C into account, it has been suggested that it could be useful to increase the daily
intake of these foods during the spread of COVID-19 [88,127,128]. However, one must also
consider that high doses of ascorbate can also be harmful [129]. The antioxidant activity
of vitamin C works in synergy with quercetin, thanks to its ability to recycle the flavonol
molecule, protecting it from oxidation and recycling its oxidized quinone form after the
scavenger action on free radicals [130].

4.3. Low-Dose Aspirin

The synergistic therapeutic scheme includes aspirin at an antiplatelet dosage, given
that thrombosis is one of the most feared complications, especially in vascular and heart
disease patients.

Low-dose aspirin has been widely used due to its clearly demonstrated antithrombotic
action. Its use in SARS-CoV-2 infection could be useful for reducing or dampening platelet
hyper-aggregation, which can be caused by the binding of the Spike of the virus with
platelet ACE2 receptors, and used for the purpose of preventing micro- or macro-thrombosis
during the initial phase of the disease [131,132]. A robust treatment option with aspirin—in
addition to Indomethacin, Diclofenac, and Celecoxib—in deactivating the inflammasome,
and to modulate the overproduction of pro-inflammatory cytokines, has also been proposed
by others [26].
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A systematic literature search estimated the effect of aspirin on COVID-19 mortality.
Results showed that low-dose aspirin use was associated with reduced COVID-19 mortality,
with no bleeding risk [133]. A further study showed that the combination of prophylactic
anticoagulant therapy and aspirin resulted in a significantly lower risk of mortality in these
patients, compared to patients treated with anticoagulant alone [134].

4.4. A Gastric Protector with Possible Antiviral Action: Omeprazole

Together with indomethacin, taking a gastroprotective to protect the gastrointestinal
mucosa from the possible adverse effects of anti-inflammatories, including stress ulcers and
gastrointestinal bleeding, is recommended [135,136]. Of these, omeprazole was preferred
because, in addition to its known ability to protect against gastro-injurious events from
NSAIDs at the gastro-duodenal level, it was proposed as a molecule capable of inhibiting
the Mpro of SARS-CoV-2, binding to its C-terminal domain [137].

Another interesting study reported that omeprazole suppressed ACE2 expression in a
dose-dependent manner, along with the induction of CYP1A1, a gene of the cytochrome
P450 super-family of enzymes, involved in the metabolism of xenobiotics and drugs [138].
Finally, a thorough bioinformatics analysis of potential new drug targets useful in COVID-
19 identified 21 drug candidates, including omeprazole and aspirin, which interact with
CXCL8 (a cytokine with chemotactic activity), IL1beta (pro-inflammatory), and CSF2
(leukocyte growth factor, causes leukocytosis) [139].

To all of this, we must add that some experimental works suggest that quercetin
also has protective effects on the gastric [140] and intestinal mucosa during treatment
with indomethacin [141,142]. Therefore, omeprazole and quercetin could also synergize in
mucosal protection.

5. Discussion

Although the rationale for the use of non-steroidal anti-inflammatory drugs in COVID-
19 was clear from the beginning of the pandemic, in Italy and most of the rest of the
Western world, no indications were given for their immediate use to halt or, at least, limit
the damage caused by the disease. On the contrary, the first guidelines, issued by the
Ministry of Health and AIFA [10,143], suggested the use of paracetamol, which has no
pathophysiological rationale for use in COVID-19 other than to reduce the extent of certain
symptoms such as fever and pain, and to wait the first 72 h in watchful waiting in the
hope that the disease would self-limit. This did not take into account the fact that an infec-
tious disease such as this, which can produce severe inflammation in certain vital organs
and thrombosis in the days that follow, must be addressed with drugs that are not only
symptomatic but also have an action mechanism that makes them capable of interfering
with the pathophysiological mechanisms that the virus uses to produce aggravation of the
disease and lead to hospitalization and death. A simple, rapid intervention with NSAIDs
would probably have led to a major reduction in the number of hospitalizations and deaths.
Unfortunately, however, this has not been demonstrated with appropriate, randomized,
and controlled studies as EBM would like today. In fact, due to considerable organizational
difficulties, mainly retrospective observational studies were carried out, which showed
that prompt home intervention with NSAIDs in the treatment of patients with COVID-19
resulted in a more rapid resolution of symptoms, and a significant reduction in the number
of hospitalizations and deaths [11–15].

But there was certainly little interest on the part of the major pharmaceutical com-
panies in sponsoring randomized controlled trials with these old drugs, whereas there
was considerable interest in some considerably expensive antiviral drugs. Governments,
including the Italian one, also showed little interest in investing in studies on these old
drugs. Perhaps, they feared that if it turned out that some old anti-inflammatory drugs
were effective in treating the disease, the population would not be sufficiently stimulated
to take advantage of vaccination to protect themselves. This would have undermined
the whole political approach, especially by Western countries that had invested many
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billions in vaccination as the major and, perhaps, only pharmacological means to eradicate
the pandemic.

Yet, published retrospective observational studies on the efficacy of NSAIDs in the
treatment of COVID-19 have all pointed in the direction of good efficacy. On the other
hand, there are significant limitations affecting the use of RCTs for public health purposes
such as in the case of pandemic phase infectious diseases, for which public health decisions
must be made quickly based on limited and often imperfect available data. In these
cases, results from observational studies remain the most important source of data, but
other examples include the analysis of aggregated clinical and epidemiological data [144].
Thus, observational studies published on the subject could certainly have been given more
prominence. Probably, vaccination and early at-home treatment with NSAIDs, which were
brought together in the fighting of the pandemic, could have produced better results.

Only recently, more than 3 years after the start of the pandemic, did the Italian
Federation of General Practitioners (IFMMG), which until now had only pushed in the
direction of vaccines, in collaboration with the Infectious Disease Unit of Tor Vergata
Polyclinic in Rome, draw up a flow-chart, for General Practitioners, for at home early
treatment of patients with COVID-19 [145]. This document states that early at-home
treatment of SARS-CoV-2 infection is now possible due to the availability of specific
antiviral drugs to be used in at-risk patients, and that non-steroidal anti-inflammatory
drugs (NSAIDs) have a very important function in combating the virus right from the early
stage of infection. Therefore, the use of NSAIDs is not only rational but also effective in
cases, still in the majority, intractable with antivirals. This document also suggests creating
a better home control system for patients with COVID-19, sending to the hospital only
patients at risk and those who worsen, in order to try to avoid overcrowding of hospitals.
These seemingly simple concepts have been applied in Italy since the beginning of the
pandemic by doctors who belong to the “Early at home therapy group for COVID-19”
(www.terapiadomiciliarecovid19.org (accessed on 19 April 2020)). This group was founded
by the lawyer Erich Grimaldi, to provide early help to COVID-19 patients at home at a
time marked by organizational difficulties in Italian health institutions and the government.
However, this group was largely boycotted by both the Italian Ministry of Health and
medical institutions, which mainly suggested the use of paracetamol as symptomatic,
and a wait-and-watch approach in the first three days after the beginning of symptoms.
Greater cooperation from government and greater dialogue between the parties would
certainly have produced better results. In fact, applying these concepts from the beginning
could have reduced the very high lethality of the disease during the first two years of the
pandemic and prevented hospital overload.

6. Conclusions

While the use of corticosteroids could be contraindicated at the beginning of COVID-19
due to their immune-suppressive mechanism, based on their well-known mechanisms and
the supporting literature, NSAIDs can be beneficially used to prevent the worsening of the
disease. Furthermore, we also believe that the best therapeutic approach from the beginning
of the pandemic should have been based on early at home treatment with NSAIDs, in
association with other compounds that act synergistically to counteract the viral load and
oxidative stress. Of the various NSAIDs, the choice should fall to indomethacin due to
the characteristics we have described. Thus, we hope that a robust randomized-controlled
study will be started as soon as possible to verify the efficacy of NSAIDs, with or without
supplements, based on a non-inferiority design compared to the authorized antivirals for
COVID-19.
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